Most avalanches occur spontaneously during storms under increased load due to snowfall. The second largest cause of natural avalanches is metamorphic changes in the snowpack such as melting due to solar radiation. Other natural causes include rain, earthquakes, rockfall and icefall. Artificial triggers of avalanches include skiers, snowmobiles, and controlled explosive work. Contrary to popular belief, avalanches are not triggered by loud sound; the pressure from sound is orders of magnitude too small to trigger an avalanche.
Avalanche initiation can start at a point with only a small amount of snow moving initially; this is typical of wet snow avalanches or avalanches in dry unconsolidated snow. However, if the snow has sintered into a stiff slab overlying a weak layer then fractures can propagate very rapidly, so that a large volume of snow, that may be thousands of cubic meters, can start moving almost simultaneously.
A snowpack will fail when the load exceeds the strength. The load is straightforward; it is the weight of the snow. However, the strength of the snowpack is much more difficult to determine and is extremely heterogenous. It varies in detail with properties of the snow grains, size, density, morphology, temperature, water content; and the properties of the bonds between the grains. [3] These properties may all metamorphose in time according to the local humidity, water vapour flux, temperature and heat flux. The top of the snowpack is also extensively influenced by incoming radiation and the local air flow. One of the aims of avalanche research is to develop and validate computer models that can describe the evolution of the seasonal snowpack over time.[4] A complicating factor is the complex interaction of terrain and weather, which causes significant spatial and temporal variability of the depths, crystal forms, and layering of the seasonal snowpack.
Slab avalanches
Slab avalanches form frequently in snow that has been deposited, or redeposited by wind. They have the characteristic appearance of a block (slab) of snow cut out from its surroundings by fractures. Elements of slab avalanches include the following: a crown fracture at the top of the start zone, flank fractures on the sides of the start zones, and a fracture at the bottom called the staunchwall. The crown and flank fractures are vertical walls in the snow delineating the snow that was entrained in the avalanche from the snow that remained on the slope. Slabs can vary in thickness from a few centimetres to three metres. Slab avalanches account for around 90% of avalanche-related fatalities in backcountry users.
Powder snow avalanches
The largest avalanches form turbulent suspension currents known as
powder snow avalanches or mixed avalanches. These consist of a powder cloud, which overlies a dense avalanche. They can form from any type of snow or initiation mechanism, but usually occur with fresh dry powder. They can exceed speeds of 300 kilometres per hour (190 mph), and masses of 10,000,000 tonnes (10,000,000 long tons; 10,000,000 short tons); their flows can travel long distances along flat valley bottoms and even uphill for short distances.
Wet snow avalanches
In contrast to powder snow avalanches, wet snow avalanches are a low velocity suspension of snow and water, with the flow confined to the track surface (McClung, first edition 1999, page 108). The low speed of travel is due to the friction between the sliding surface of the track and the water saturated flow. Despite the low speed of travel (~10–40 km/h), wet snow avalanches are capable of generating powerful destructive forces, due to the large mass, and density. The body of the flow of a wet snow avalanche can plough through soft snow, and can scour boulders, earth, trees, and other vegetation; leaving exposed, and often scored, ground in the avalanche track. Wet snow avalanches can be initiated from either loose snow releases, or slab releases, and only occur in snow packs that are water saturated and isothermally equilibrated to the melting point of water. The isothermal characteristic of wet snow avalanches has led to the secondary term of isothermal slides found in the literature (for example in Daffern, 1999, page 93).At temperate latitudes wet snow avalanches are frequently associated with climatic avalanche cycles at the end of the winter season, when there is significant daytime warming.
Avalanche pathway
As an avalanche moves down a slope it follows a certain pathway that is dependent on the slopes degree of steepness and the volume of snow/ice involved in the
mass movement. The origin of an avalanche is called the Starting Point and typically occurs on a 30–45 degree slope. The body of the pathway is called the Track of the avalanche and usually occurs on a 20–30 degree slope. When the avalanche loses its momentum and eventually stops it reaches the Runout Zone. This usually occurs when the slope has reached a steepness that is less than 20 degrees. These degrees are not consistently true due to the fact that each avalanche is unique depending on the stability of the
snowpack that it was derived from as well as the environmental or human influences that triggered the mass movement.
..... .... Login with Google and support us
Thanks